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ABSTRACT

Semi-empirical potential energy curves for the interaction
+ 3+
and Ez states have been
g u

calculated by assuming a simple approximate wave function, computing

|
of two hydrogen atoms in the E:

the expectation value of the Hamiltonian for the system, and then
considering the units of energy,ea/Ouc , length, a and the
screening parameter to be adjustable parameters, to be chosen

to give as good a fit of the true curve as possible. The trial
functions used were made up from 1s hydrogenic or Gaussian atomic
orbitals; some allowance for polarization was included in a number
of the computations. The resulting curves fail to give as faithful
a representation of the true curves as had been desired. Further
improvement would require the addition of undesirable complexity

in the trial functions and therefore in the computations for this

and for more complex systems.
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I, INTRODUCTLION

Recently a nuwber of schemes for using accurate (experimental
and /pr thecretical; poatential energy curves for diatomic molecules
to infer the characteristics of potential energy surfaces for
polyatomic systems have been uszed for computations for H3 and
several small m@]eCUIESLag. In general, these szchemes fave involved
the estimation of molecular integrals arising from an approximate
formulavion of the problem in terms of relatively szimple atomic
orbitals.

An alternative method of semi-empiricism might take the form
of choosing simple approximate wave functions for the dizvowic calr,
computing the diatomic potential energy curves in the ususzl way,
forcing a fit of this computed curve to the accurately known curve
by suitable adjustment of parameters and then czrrying cut the
calculation for the polyatomic system with the parameters obtzined
from the diatomic calculation.

This report deals with attempts to carry out the firzt stage
of this scheme; i.e. to choose a simple form for & trial function and

4 A

to then force a fit of the accurztely known potential for the }:

T+ g
and the %Ej states of H. The trial funcrtione used were (1) a

9
u

scaled Heitler-London or Wang type function using scaled hydrogenic

atomic orbitals, (27 s simiiar function using scaled Gacssian

atomic orbitals, and (3) & functicn like (2) to which electron

correlation along the ianternuclear axis was sdded in a souewhar



arbitrary fashion to improve the long range interaction behavior.
In all three cases, the adjustable parameters utilized to fit the
experimental data were the scaling parameter in the atomic orbitals
and the so-called atomic units e2/ao and a_. The values chosen
for these constants were such as to insure that the potential
resulting from a 'rigorous' computation of the binding energy
expectation value with the given trial function have the correct
well depth (spectroscopic dissoclation energy) and equilibrium
nuclear separation, with a variety of conditions used for the
required third condition.

The resulting potential curves fail to give as faithful a
representation of the true singlet and triplet curves as had been
desired, with significant improvement seemingly dependent on the
addition of (unwanted) complexity in the trial functions and therefore

in the computations for complex systems.




I, CHOICE OF APPROXIMATE WAVE FUNCTIONS AND PARAMETERS

Three types of approximate wave functionz have been used in
the exploratory calculations which have been carried cut. The iisst

o : - 5 i . -
cf thesze, YL . has the forim of the Wang wodificztion of the

He!tler-London function
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The second, Yi} , is of the same type excepl that the

= a :
SDG = exp {—Z (\’"O_‘ + ‘('bz >} ¥ exP{-‘ %a<\‘:f X \-:av} (2)

hydrogenic atomic orbitals used to make up the Wang function

have been replaced by simple Gaussian functions. Though it was to

be expected that this substitution would lead to less alcurate
results than the first choice, the advantages of the use of Gayssgians
(primarily the far greater ease of evaluation of multicenter
integrals) for the extencion of the method to polyatomic systems

made this function well worth investigation. 1In each case, the

1 +
upper =zign iz taken for che ;E: state and the lower for the
I 3
state.
o

From the outset it was recognized that these funitions would
oy ) 6 X . :
fail to give the proper (1/R) dependence for the long range or

van der Waals potential energy. In order to introdute the eleltron




correlation necessary to bring about such a form at long range in
as simple as possible way, the second function %2_ , was modified

to give the last function ?QEP

(PGP= exp{-za(‘(‘:‘*-\‘:;\)} [I + Eaﬁ Zmzbal .

a a
+ exp{— -23(“:‘? +Vma§}[:\ + Z 3 ZuZ.g

Again, the upper sign refers to the’ ;E: ;k state of the molecule.

In all of these functions, the coordinate system employgd is
illustrated in Fig. 1. Distances are considered to be measured in
units of a_ (an adjustable parameter!) and 2z 1is an adjustable
scaling or screening parameter. The parameter /3 , suggested by
the paper of Hirschfelder and Linnetts, which governs the extent of
electron correlation along the direction of the internuclear axis
was chosen in a particular way as discussed below, and is not
independent of the choice of =z .

The computation of a binding energy curve for a particular

trial function is represented formally by equation (4)

_SPldlbey <“P\”H\“P>Rm (4)
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where the Hamiltonian is
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This gives the curve in terms of pseudo-atomic units of energy,

ez/aO , and length, ao, These were chosen in each case to obtain
] +

for the :E: q gstate a potential minimum of the proper depth

occurring at the correct internuclear separation.

A third condition is necessary to establish the value of the
scaling parameter, z . A major portion of the effort has been in
seeking a way of choosing this parameter to give the best posegible
fit of both the singlet and triplet curves.

In the case of ?14 two conditions were tried for fixing =z
The first of these, refered hereafter as HIl, involved requiring
that the repulsive portion of the singlet curve cross the zero
energy line at the proper internuclear distance. The second
condition, H2, was to equate the second derivative of the singlet
curve, evaluated at the potential minimum, to the force constant
which is obtainable from the fundamental vibration frequency.
Details are given in the following section. It will be nected that
the choice of 2z 1is independent of the choice of eﬁ/ﬂband G,

In addition, a series of calculations for arbitrary values of

z ranging from 0.75 to 2.00 were carried out in order to determiue




the characteristics of the potential curves obtained with z wider
range of paramreter values than was afforded by Hl and H2.
Theze calculations are labeled HZ.

With Fg the conditions imposed were as follows:
Gl: entirely similar to HI.

(¢2: the attempt to impose the condition similar to H2 1led
to the conclusion that one cannot quite satisfy the
condition with this trial function. The computstion
labeled G2 was continued with the value of 2z which

comes closest to satisfying the condition.

-~

K1 -+ P . \ -+
G3: Since a fit of the Zu cufve as ‘well as the z N curve
wag a primary goal of the investigation, one point on
the actual curve may be used to "fix z". The point used for
this calculation was at the same internuclear separation

i +
for which the E state has its minimum.
R

Fersimeter choices for calculations with functino %%&P WELE
wndc subicct to the following considerations: at laige & here
exchange terins becowe uclmportant because of the crthogonsliicty cof
the orbitals on the ditfferent centers, it is counvenient to write
the Hamiltonian in terms of an atomic Hamiltonian for each atom

plus a multipole expansion of the remaining terms which represent

. 9
the interaction of the two atoms. Thus

\
,H = ,N"ﬂ + wb - 'E'é [azou:zba— xo.txba_ YMYha e (€)




At leng range the function qasp may be simplified to

in _ a a a =)
= expl-zCets V0 + 22, 2,
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The interaction energy for large separations iz then found to be

given by (the neceszsary integrals were taken from work of Hirschfelder

and of Kimlo)

= - b A 2L ,\_1/’.:1
E = 4.,;.2{)(3/.1 p’[az""s ’1’7‘]} (&5
where
2
x = 25 R™
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It is immediately noticed that the desired 1/R dependence will

be obtained if

3
/3 = —;Zz& (9

With this choice (for comparison, see the long range form found by

Hirschfelder and Linnetté) the energy is given by

P S -1 2\ = _\_.«(/’.?_—] (10)
E = H‘_‘xz{B*B{";{“'a 3
It is apparent that this will be attractive only if

s> 8" [3z + 57F ]



and that for given X that the minimum value of the interaction

energy will be obtained for

8: a_ (11)
Z + 3 1/-,]%,—

(12)

E= - &

wle|

= +

Preliminary calculations indicated that for all reasonable values
of 2z , this long range energy is smaller in absolute magnitude
than the correct 1/R6 dispersion energy. Therefore in the
computations reported here, /3 was taken to have the form given
by equation (9) with the constant B given as a function of =z
by equation (1l1). Primarily for reason of simplicity this form
was maintained for all separations; it may be well to note that
the analogous parameter in the work of Hirschfelder and Linnett8
exhibits considerably more complex behavior at intermediate and
small separations.

The choice of the three parameters =z , e2/ao , and a  were
then made as follows: for each computation, a value of 2z was
chosen, with this choice for the calculations GPl, GP2, and GP3
being the values obtained in the calculations Gl, G2, and G3,
respectively. 1In order to restore the point of potential minimum for

the singlet curve to the proper nuclear separation and depth, the




2,

Jass
)

valuez oI €

o nd 2 from Gl, G2, znd G3 were then readiusted
to new vzlues, Thus GPL lg penezlogically related to Gl, etc. but
the condition used for fixing 2z in the more primitive calculation
ie no longer s#atlizfied.

Althsugh one wight try to formulate conditions for once aggin
choosing 2z such that those physical condition: be wet, the
complexity of the expressions involved make this a forbidding task.
It wae judged more expedient to calculate potential curvee for a
range of arbitrarily chosen values of 2z , in each cagse first
estimsting e /a_, and &, and then readjusting these to fit the
minimun. of the computed curve to the true minimuwm. Thesze

caiculations are labeled GFPZ.
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III. DETAILS OF THE CALCULATIONS
A, Calculations with the Hydrogenic Wang Function, (PH

The trial function given in equation (1) leads to the following
expression for the binding energy of the molecule: (See Hirschfelder

and Linnett, ref. 8)

2 *
e’ (_a], Q,~ &S \ V.. *@as-Q®
- + ) ° r 2| = + oo ° ° 13
E. aoz[—ltS:;] [c‘ | = S )

[~

which has the form

i+

E. = —%{ {za L+ 2 g#qﬂg (14)

Here

- ZR ,
1 e (15)
and the positive sign is taken for the singlet state, the negative

sign for the triplet.
The singlet curve will have a minimum at some q = q,- The

condition satisfied for this point is

dE,

= 0 (16)
dq %

which serves to relate 2z and q, -
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Z = CJ%*

> (175

Requiring that the minimum correspond to the experimental
I , \ Ly D04 .
equilibrium sepsration, RO , (0.74142 A) then fixes the parameter

a_ for any arbictrary choice of dq

a, = Z Ro/%o (18)

2, . PN
The value 2f e jao w8y then be chosen such that equation {14

evaluated at q, gives the correct binding energy, Dea

-1 4
(=36 292.7 em "y .

The arbitrariness of the checice of q, may be removed by
impozing a third condition. (In view of eqn. (17) this is
equivalent to an arbitrary choice of 2z). In the computation ¥ 1
refered to in the preceding section, the condition s to require
the crogsing of the zero of energy line by the repulzive cection

of the singlet curve to come at the proper value c¢f R = RC

o4
(0.41119 A) . The condition is easily formulated by noting that

any calculated curve will crose the E+ = 0 1line for some ¢ = q,

Then

N
n

Ll = HE T -54s9 = &’ /5w
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Then the condition to be satisfied is

E.(q)=o= —i_-: {Za f oz 3+<1<>} (207

Since now q. = .554598 q, and z 1is a function of q, through
equation (17), the computation may be carried out as a search for
the value of q, satisfying equation (20). Explicit expressions
for the functions and their derivatives are given in Appendix A.
In the computation H2, as previously mentioned, the choice
of q, (or z) is based upon the second derivative of the singlet

energy curve at the minimum. From equation (13)

R a
RE;- :(Zi) = .Za daﬁ-k < > (21)
Q. Q
2. . 0 dq, e

Upon multiplying this by ROZ/Eo an equation is obtained

2, 2 a{ E c;&ﬂ) d 3,,> }
Re (dEY = Yo \ge®/a. ™ = (Fa7 )

E. dR3 Q EE& _€+ <1L°> Lz ‘3*-<<\;>

(22)

in which the left side contains only terms which may be related
to experimental quantities and the right side is a function of ¢

only. The left side may be evaluated by writing it as

]
NHR° ‘q‘rr;{\)o'52
De
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and us=ing the values

b, - 38 2927 ew > Ref, &
i}
Vg = 4405.3 ¢m © Ref, 13
Fu = 838827 gm
o]
R = 074142 A Ref. 4

One cobtains

el R 2
}AHHTT Uo Ro‘;"*/./éo"‘/(pqéo

ol-

The calculation HZ was carried sut by conducting & numerical
gearch for the value of 4, satisfying equation (22;. Detziled

expressions for the derivatives and functions needed in the

. ; , . s . 2
computation are given in Appendix &. The fixing of &, and & /ag

are completed in the szme manner as described above.

The HZ Computations were relatively simple compared to those
of H1 and H2. For a given value of 2z , arbitrary but reasonable

. . , ‘ 2 . .

approzimations were chocen for a and e /aoo & numerical search
for the minimum in the singlet curve (Eqn. 14) was carried out;
having thus egtablished g new values for a_ (Eqn. 18) and
o’ o

2 . - o ; Cx e
e fao (to give correct binding at the minimum) were eazsily obtalned.
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B. Calculations with the Gaussian Wang Function, Y%i

The treatment for this type of approximate wave function was
analogous to that for the Hydrogenic function just discussed. The

equation corresponding to (1l4) is

E, = e’ {zaftcx) + Z gtCXB} (23)

O,

where
2 _ 3
_ T Z R
X = 9 NG (24)
©
The expressions for 'fi(x) and Stxx) were obtained using

integrals worked out by Hirschfelder and by Kimlo° These along with
expressions for the required derivatives are given in Appendix B.

The calculation for G1 was carried out exactly as described
for H1 with no difficulties encountered.

The calculation for G2 failed to find a q, satigfying the
condition expressed by equation (22). The search, which took the
form of seeking a zero of the function A(qo) = 4,164696 - F(qo)
derived from equation (22), did yield the information that A(qo) .
has a maximum just slightly less than zero; the corresponding value
of q, was therefore used in further computations labeled G2 for
evaluation of parameters and computation of binding energy curves.

The final computation for this type of function had as its




ocbjective the concurrent fitting of the singlet and triplet curves
at an internuclear separation corresponding to the singlet minimum.
This condition may be met by requiring the ratio of the calculated
. . 4
energies to be equal to the accurate ratio ; i.e., that
Ei. _ De - 3%3,391.7

— = = - (25)
E- D‘\'\:\p «{7,373.&) .8O?3|3

Since this calculated ratio is a function of q, only a search for

the satisfying value of q, was conducted, once it was found, the
2 . .

parameters =z, e /a0 and a were determined in the manner

previously described.

C. Calculations with the Polarized Gaussian Functions

When the energy expression analogous to those of equations (13)

or (23) is worked out for the function 'ﬁép . with B given by

equation (11) for the reasons discussed in section II, the expression

is considerably more complicated and cannot be put in as simple a
form in the parameter 2z as in those earlier cases. The detailed
A
expression is given in Appendix C.
. . s 2
This complexity does not greatly affect the choice of e /ao
and &, to make the computed curve fit the singlet potential-
minimum, but it does méke the application of a third condition for

the choosing of 2z in the manner of the earlier calculations

prohibitively difficult. However, it is relatively easy to

15




investigate the behavior of this potential function as a function of

. . . . . 2
by simply choosing arbitrary values of 2z , estimating a, and e /ao

roughly, locating the minimum of this potential curve and then
readjusting these two parameters to give the desired fit at the

minimum,

IV. RESULTS

The results of these calculations are embodied in the values
of the parameters obtained, which are presented in Tables I - III
and in the potential energy curves plotted in Figures 2 - 16,
For comparison these figures also show the accurate curves of Kolos
and Wolniewiczu, the Morse curve for the singlet state, and an anti-
Morse curve2 (modified Sato function) for the triplet‘curveo

The equations for the latter two curves are:

Morse

E =D, {ex:o[-a«m-mﬂ— an({—a(R-Rgﬂ (26)

1

Anti-Morse

3E = D3{exP[—Q/3(R‘R°}]+ o?exp[—[SCR-Roﬂl (27

The values for the parameters are given in Table IV,

In the GPZ calculations, the variation of the other parameters

Z

16



as the value of =z 1is changed was obtained, the results are shown

in Figures 17-19. Figure 20 gives a plot of the ratio of the

coefficient of l/R6 obtained in these calculation to the true valueg

as a function of =z ,

V. CONCLUSIONS

As a result of this study, several rather:.general conclusions

may be drawn:

A, The computation of potential energy curves using the trial
functions here represented are relatively simple and quick to
perform if a high sﬁeed computer is used. For example, a set of
computations such as GPZ (as illustrated in Figures 12 - 16)
involving complete singlet and triplet curves (75 points each) for
nine values of 2z required two minutes of CDC 1604 computing time,
This includes compiling time, printing time, and the search to fit
the parameters, so that only a small fraction of the time was
actually gpent computing the curves themselves. It should also be
added that little attention was given to development of the most
efficient programs for these computations; if any large scale use
of this method were to be made, a considerable improvement could
undoubtedly be achieved.

The time required for the HZ computations was approximately
the same as needed for the GPZ calculaticns. Although the form

of the trial function and the energy expression seem simpler, the

17



integral evaluations involved are considerably more difficuit znd

time consuming.

B. In overall faithfulness of representation of the Kolos
and Wolniewicz4 curves, the polarized Gaussian Wang function, YLP P
does about as well as the Hydrogenic Wang function, HOH . The
simple Gaussian Wang function, Fz_ ; is definitely inferior. All
of the functions lead to singlet curves which exhibit toc littie
binding in the middle range (2.5 <R < 6.0), in contrest to the Mcrse
curve which £fails in the opposite direction.

The triplet curves are less satisfactory, as might be expected
since the parameter choice was based on the minimum cf the singlet
curve., The computed curves consistently give too high an energy
(are toc repulsive) at small separations (R < 2.5) and zlthough
the Polarized Gaussian form does have a van der Waals minimum at

roughly the correct value of R , it is too shallow.

a C. In a certain sense, the results are disappointing,
particularly in the short range portion of the triplet curves and
in the middle and long range portions of the singlet curves. 1In
particular, the GPZ calculations show rather conclusively that this
type of function does not contain sufficient flexibility to fit the
whole range of R values and cannot be made to have the prcper
long range interaction.

Improvement could undoubtedly be obtained by making B a

18
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function of R , rather than a constant, and further improvement

in the long-range behavior weuld result from adding x and vy
correlation as in Hirschfeider and Linnett . It is unlikely, however,
that these improvements would be sufficient to compensate for the
much greater compiexity which would result in the computational

effort required.




TABLE I

Parameters For Hydrogenic Wang Function, &OH

zZ a_(a) e2/a0 (cmnl)

H1 1. 47584689 0.659796989 1.34273729 x 10°
H2 1. 77499307 0.790134302 8.92062764 x 10
HZ 0.75 0. 341005509 6.76993983 x 10°
1.00 0.451458951 3,30193502 x 10°

1.25 0.561149318 1.95678272 x 10°

1.50 0.670456365 1.29482548 x 10°

1.75 0.779361875 9.20257701 x 107

2.00 0.888097438 6.87713793 x 10°




Parameters for Gaussian Wang Function, st

TABLE II

21

1

Z aO(A) ez/ao(cm- )
Gl 1.21614849 0.921374110 7.60308523 x lO4
G2 3.308958 2.220810 1.176088 x 104
G3 0.269293887 0.223579725 8.36352720 x 105




TABLE III

Parameters for Polarized Gaussian Wang Function, %EP

Z aO(A) ezlao(cmﬂl)

GP1l 1.21614849 1.17357900 4.13027000 x 104 D, 572065

GP2 3.308958 2.747089 9.8053322 x lO3 C. 2603263

GP3 0.269293887 0.3026936 1.222835 x lG5 1.24520

GPZ . 500000 . 346673739 8.44743682 x 104 . 96

. 750000 . 776474563 6.50564971 x 104L . 78GCT7S30

1.0 . 991553328 5.07723544 x 164 LOR2TT4L236
1.25 1.20174459 4.00281044 x 1OL CL3ELIILG L
1.50 1.40825854 3.20598434 x 10/+ L9215
1.75 1.61063973 2,61200967 x 104 JA3R226542
2.0 1.80756696 2.16258303 x lOa - 394IEEHRT
2.25 1.99854898 1.81641543 x 104 » 3594
2.50 2.18307460 1.54502829 x 10A o3




TABIE IV

Parameters for Morse and Anti Morse Functions

D, 38292.7 cm”
D, 15790.8 cm”
& 1.04435
/3 1.000122
R 1.4011 au

[
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APPENDIX A

for the Hydrogenic Wang Function.

The Functions f+ and %i

T+
(Upper sign refers to E:ﬂ state).

fico = =(355)

A-1
} oo o0
w2 9:C = g m T T
A-3 here Uo_i:-)ooz Bot Do = —é_-{\<ggloo_a60t<1“oolog— ch\&k

Q,S,B and D are all taken from
o o o

The expressions for
Explicitly they are the following:

Hirschfelder and Linnett .

ST T, T

a < _
A-5 50(@:{%% + ‘1‘*\} e T
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wag obtained from

}
The explicit expression for§§'L°o oo

rs 1
Pauling and Wilson 1

' .4
Zlew T |€

©0 o0
v

)

Here & = .5772156649 and E4(—x) is the exponentizal integrallzw
The derivatives needed for the calculations described were

evaluated from the above expressions ac follows:

lst Derivatives

E]._._F_i_ = ——l-——' a Q° —_— Ca + Q°> d So
A9 dq, I+ S, cch, Qo+ So)a d%
A-10 CJ3+ - = - Cl+\+ + ——-‘—_"“ ﬁ’&.’f’_ - uoo/oo d Sg

|
dq, o ode  G+S) ag G+ S dv
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d4Q, _ -9,
A-11 d%—-3q,e {N+Sq)+aq‘\§
dSe _ _a _ _ 7301 3, 4
a2 Jo 3 € {3%+‘§%+&%+\
Con:-oe | dKooeo dGo AL dQ
A1 g z i =Py "2 3q ¢V q—% Ty
L dKpowo - - 4+ e bfr @ a2
A-14 — —ch'__ = %a 3%"*‘ (,,CL %+(La
L dG \ - ag, 2 s
- -
1 a a 3
12 + a L + SCL‘ + 3 9Q
- aq, P
- e A _n
ol B2 Y- ag
4 o dleses _ L 2 3
= a a
= 9 s - " F%)

+oe B C-‘*q){‘%*‘ v & -grag g £

wra ECap{ Tty -5
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2rd Deriyetives
A-17
l 4%Q. _ 2 aéig d Q.
T I+S, dq° (1r+38) dq dq.
+ -
&
_ 2+ dfs, |, (24 Q0) <C\so>°"
(1 + SN2 dg® C1 4+ S d
o q 1
A-18
—Q—,'s - _ﬂ + ~_=l__-. dano_‘—co
da % cha‘ )+ 5° Cl%""
A+ -
dCLa _— d d 60 d Uo:voo e Uc:- oo da S’O
O+ S dq dq Civ SOY dqﬁ
_ Upe. oo /asf,yg
(1 + S8 L dq, ,
A-19
df . 4 T , a 3
A-20
a a - & 2 y X 3
d¥s0 = £ TN T+ T - ag
P 3 3
A'2l a a R 2
danjoo - _L.{d %.‘3&2_‘3_ -3 éﬂ@& 4+ ,d‘Loo,gs__, m,zfl;ga&
Jq.° 2| dqf 4 dq dq,




onl-

1 3

aN 7
3 3 U

_T _,a..—mct-?%a"

-a%

e +la<r+\m13<%+%+3f+%

+%+%‘{+%f)

aq LI & 2 _4
+1ae Ei(—‘lc\){‘l? TR R B

48] —ar e T E Y

28




APPENITX B

The functions f and g  for the Gaussian Wang function.
-+ +
. - | -+ —
(Upper + sign refers to > state).
e
&

B-1

B-4

B-5

— X
fLoo = 5 =5

which, for the szke of ccrventence In computation may be

written as

ﬂ(x) = X {z Cx)

with ft’CX\) = (e =z )7

It will be nected that this aprezars in the expression for &y

where HtCX> = - (&1/—0:[ +I>+ "*I'V-o:l- F<%>
r e iaﬁf Fdax) - F(x>-§
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36 FOO = YT ecf (%)

11
where erf(Z) 1is the error function.

lst Derivatives

daf,
B-7 %%— = aﬁ{{:(x) + X g

-2 g dhn af,

B-8 j:?f = 21X {"2’!{ X+ 1’?"7'['F stﬁt F h, 00 ax z
! 4 A

B-9 jf* = e {ﬂ_ CX)}

- % - x
B-10 3:+= 3‘; VR [ e - F(‘i‘)]%—ﬁe -

+ ex[ﬁ Cax=1)FCax) - ax-DFK
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2nd Derivatives

I,
dq¥

154

{f(x) + ngilﬂ“ a X —di{Tz

da%-‘- das
x & BT

4 X

e [ﬂ'(,@]a [0+ aF O eX]

L (F-x - Zrd e cyda () E
+ 167a FCR) + [ va (v x2-
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APPENDIX C

Binding energy expression, Gaussian Wang with simple

[T.0O+ 2B T 0+ o, xd] 2°

polarization
c-1
&
e +
E ()= a

+ RN, (X)) + a/g'RN.a(x) +/&'QRNaa(x)

VNA, (XY + ap' VNA, (O +/Z>'°?\)N Haa<X§

+ VER,(x) + a/A’VERm(x)ﬂs' \ ER_. (0|2

1

A la =X
I+ 3R *e {l—:%[s'x +,“g(|—x§°?/3'a}

Here




c-3 and /3’: R)z2 = B/ x%

and in the computations, the constant B is given by

(see eqn. 24 and preceeding discussion).

-
%)

=

C-4 B =(z2+ %

The remaining quantities in C-1 are given by the following
+
\
expressions, with the upper sign taken for the Ej state

+ g
and the lower sign for the %Ej state.

s T, (0 = 351 e - %))

oo ANA, GO = -4 TF e Flan t aF() e

c-7 VER, (x> = 7R { Fdxy £ e—x}

i
S
M

|
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i
x
v

c-8 RN“(X>
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cs T = £ x(x-8)e

c-10 VN HlaCX) =% 31/:_7‘:; {e_ s Cx-1) F(%)} e

e VERGO) = T { ¥ LI+ e F ]

13 T = 5 {82 e G-xOCs-ex+ x O}

+ %x(u—ax}[F(&X\)-e—ax]

A
&
c-14 VNA__(x) = —1[777‘ 2
“ 3 -DT0 % - Ky F (D
X
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CAPTIONS FOR FIGURES

Figure Caption
1. The coordinate system used in these calculations
2-3. Fitted singlet curves resulting from Wang type trial

functions with hydrogenic orbitals. For comparison, the
exact curve as computed by Kolos and Wolniewicz (ref. 4)
and the familiar Morse potential are plotted also.

4-6. Fitted triplet curves resulting from Wang type trial
functions with hydrogenic orbitals. For comparison the
exact curve as computed by Kolos and Wolniewicz (ref. 4)
and an "anti-Morse potential' (ref. 2) are plotted also.

7. Fitted singlet and triplet curves resulting from Wang
type trial functions with hydrogenic orbitals and with
arbitrary values of the screening parameter z.

8. Fitted singlet curves resulting from Wang type trial
functions with Gaussian orbitals.

9. Fitted triplet curves resulting from Wang type trial
functions with Gaussian orbitals.

10. Fitted singlet curves resulting from trial functions
which include polarization; Gaussian orbitals.

11. Fitted triplet curves resulting from trial functions
which include polarization; Gaussian orbitals.

12-13. Fitted singlet curves resulting from trial functions
which include polarization, Gaussian orbitals; arbitrarily

chosen values for the screening parameter.




Captions,

14-16.

17.

18.

19.

20,

37
continued

Fitted triplet curves resulting from trial functions
which include polarization, Gaussian orbitals;
arbitrarily chosen values for the screening parameter.
Variation of the energy parameter e2/aO with the
screening parameter z for polarized Gaussian trial
functions.

Variation of the length parameter a with the screening
parameter z for polarized Gaussian trial functioms.
Variation of the optimum polarization constant B with
the screening parameter z for polarized Gaussian trial
functions.

Ratio of the long range energy calculated with polarized
Gaussian trial functions and arbitrary values of z to

the correct London dispersion energy.
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RATIO OF LONG RANGE ENERGY
(CALCULATED) TO CORRECT LONG
RANGE ENERGY

GP 1,2,3 & Z Calculations

| Figure 20



